En poursuivant votre navigation sur ce site, vous acceptez le dépôt de cookies dans votre navigateur. (En savoir plus)

Thesis on the application of mean field games to crowd dynamics (M/F)

This offer is available in the following languages:
- Français-- Anglais

Date Limite Candidature : samedi 21 juin 2025 23:59:00 heure de Paris

Assurez-vous que votre profil candidat soit correctement renseigné avant de postuler

Informations générales

Intitulé de l'offre : Thesis on the application of mean field games to crowd dynamics (M/F) (H/F)
Référence : UMR8626-DENULL-002
Nombre de Postes : 1
Lieu de travail : ORSAY
Date de publication : samedi 31 mai 2025
Type de contrat : CDD Doctorant
Durée du contrat : 36 mois
Date de début de la thèse : 1 octobre 2025
Quotité de travail : Complet
Rémunération : 2200 gross monthly
Section(s) CN : 02 - Théories physiques : méthodes, modèles et applications

Description du sujet de thèse

A detailed understanding of crowd dynamics is a societal necessity, both for safety reasons(evacuation, panic movements in large gatherings) and for the design of public spaces (train stations, shopping malls). For physicists, this raises the question of active matter in interaction, with the added complexity of the pedestrian's ability to anticipate the future movements of other pedestrians.
The goal of this Ph.D. is to design and study a model of pedestrian motion which couples the microscopic/operational level of the motion with the necessity of optimization/anticipation required at a larger scale. This will involve relating the agent-based models to some equivalent kinetic and hydrodynamic models, and developing the corresponding mean-field game.

Contexte de travail

This thesis is part of a collaboration between a team of physicists from the LPTMS and the IJCLab in Paris Saclay, and mathematicians from Tours, Limoges and Orléans. The thesis itself will focus on the 'physics' part of the project and will be co-supervised by Denis Ullmo (LPTMS) and Cécile Appert-Roland (IJCLab).

Contraintes et risques

None