En poursuivant votre navigation sur ce site, vous acceptez le dépôt de cookies dans votre navigateur. (En savoir plus)
Portail > Offres > Offre UPR2940-FLOPOI-036 - Post-doctorat: thermodynamique de l'information quantique avec des dispositifs nano-électromécaniques (H/F)

Post-doc position: quantum information thermodynamics with nano-electro-mechanical devices.

This offer is available in the following languages:
Français - Anglais

Assurez-vous que votre profil candidat soit correctement renseigné avant de postuler. Les informations de votre profil complètent celles associées à chaque candidature. Afin d’augmenter votre visibilité sur notre Portail Emploi et ainsi permettre aux recruteurs de consulter votre profil candidat, vous avez la possibilité de déposer votre CV dans notre CVThèque en un clic !

Faites connaître cette offre !

General information

Reference : UPR2940-FLOPOI-036
Workplace : GRENOBLE
Date of publication : Thursday, September 03, 2020
Type of Contract : FTC Scientist
Contract Period : 24 months
Expected date of employment : 1 November 2020
Proportion of work : Full time
Remuneration : Salary between 2648 € and 3768 € gross monthly according to experience
Desired level of education : PhD
Experience required : Indifferent


Quantum information thermodynamics is an emerging field that explores the fundamental laws governing information, entropy and energy in the quantum realm. While its roots are clearly fundamental (energetic footprints of quantum coherence and entanglement, nature of thermodynamic time arrow at the quantum scale…), its applications nowadays attract an increasing attention, since it has the potential to estimate and optimize the energetic bill of quantum technologies. Spin or charge qubits mechanically coupled to a suspended CNT (See Figure) are extremely appealing candidates to implement fundamental experiments of quantum information thermodynamics. The mechanical degree of freedom is indeed expected to behave as an embedded source of work [1,2], offering the unique opportunity to measure directly the nano-work exchanges for the first time. This new capacity unlocks the possibility of monitoring the flows of information, energy and entropy along various quantum information processing operations (erasure, quantum gates, entanglement generation, feedback…). Moreover, the baths interacting with the qubits are generally not thermal, inviting to extend the results of information thermodynamics to non-equilibrium baths. Such suspended CNT are successfully studied by the group of Dr Natalia Ares at the University of Oxford [3,4].
[1] C. Elouard, M. Richard and A. Auffèves, New J. Physics 17, 055018 (2015).
[2] J. Monsel, C. Elouard and A. Auffèves, npj Quantum Information 4:59 (2018).
[3] Y. Wen, et al, Nature Physics 16, 75 (2020).
[4] T. Pei, et al, Phys. Rev. Lett. 118, 177701 (2017).


The theory post-doc hired within the NanoQit project will have the key role to leverage the huge potential of this experimental setup for quantum thermodynamic purposes. In strong collaboration with the whole consortium, she/he will contribute to the design, feasibility study and modeling of fundamental experiments in quantum information thermodynamics. Potential research topics include:
• The accurate modeling of the full quantum opto-mechanical setup (master equations, quantum trajectories)
• The build-up of a relevant thermodynamical framework to analyze the setup, e.g. involving the mechanical battery, as well as the non-equilibrium baths
• The design and study of new quantum engines extracting work from information, coherence or entanglement
• Thermodynamic analyzes of elementary quantum information processing operations implemented on the setup
• Study of the setup potential for stochastic quantum thermodynamics and the study of quantum fluctuation theorems


• An excellent first degree and a completed doctorate (or close to completion) in physical sciences.
• A strong background in the theory and modeling of spin and charge qubits, opto-mechanics and/or in quantum optics.
• The ability to perform innovative and effective research in condensed matter evidenced by a strong publication record in peer-reviewed journals or pre-prints.
• Ability to work in interdisciplinary projects (experiments, theory).
• Evidence of outstanding ability to work independently, and as an active collaborative member of a research team, who is well organized and self-motivated, while working cooperatively at all levels. Be highly motivated and have a strong commitment to research.
• Good communication skills both orally and in written English, suitable for the preparation of scientific publications in world-class journals and presentation of research at international conferences.

Work Context

A 2 years post-doctoral position is available to work on the theory of quantum information thermodynamics with spin and charge qubits in suspended Carbon Nanotubes (CNT). The research will be conducted in the theory group of Dr. A. Auffèves (Institut Néel, CNRS and University Grenoble Alpes) in close collaboration with the experimental group of Dr. N. Ares (Oxford). The position is part of the “Nanomechanics in the solid-state for Quantum information thermodynamics” project (NanoQit, 2020-2024) funded by the Foundational Questions Institute within the 2019 call “Information as a Fuel”.
The Institut NEEL is one of the largest French national research institutes for fundamental research in condensed matter physics enriched by interdisciplinary activities at the interfaces with chemistry, engineering and biology. It is located in the heart of a unique scientific, industrial and cultural environment. It is part of one of Europe's biggest high-tech environment in micro- and nanoelectronics, right next to the French Alpes.

We talk about it on Twitter!