En poursuivant votre navigation sur ce site, vous acceptez le dépôt de cookies dans votre navigateur. (En savoir plus)

M/F Deep Generative Models to Decipher the Dynamics of Cellular Interactions.

This offer is available in the following languages:
- Français-- Anglais

Date Limite Candidature : mercredi 10 décembre 2025 23:59:00 heure de Paris

Assurez-vous que votre profil candidat soit correctement renseigné avant de postuler

Informations générales

Intitulé de l'offre : M/F Deep Generative Models to Decipher the Dynamics of Cellular Interactions. (H/F)
Référence : UMR8197-VALHER-209
Nombre de Postes : 1
Lieu de travail : PARIS 05
Date de publication : mercredi 19 novembre 2025
Type de contrat : CDD Doctorant
Durée du contrat : 36 mois
Date de début de la thèse : 1 février 2026
Quotité de travail : Complet
Rémunération : 2300 € gross monthly
Section(s) CN : 51 - Modélisation mathématique, informatique et physique pour les sciences du vivant

Description du sujet de thèse

Deep Generative Models to Decipher the Dynamics of Cellular Interactions.
The PhD student will develop deep generative models to decode and simulate the dynamics of cellular interactions from videomicroscopy data. The main objective will be to design a system capable of generating synthetic video sequences that reflect cellular behaviors under different experimental conditions. This approach will help identify and quantify dynamic differences linked to treatments, cellular states, or specific biological contexts.
The candidate will contribute to model architecture design, validation protocol development, and collaborative experiments with biologists. They will also take part in disseminating the research results through scientific publications and conference presentations.
Activities:
- Design and training of conditional generative models for video sequences.
- Analysis of cell dynamics differences between experimental conditions.
- Validation on biological datasets from tumor models and embryology.
- Contribution to publications and scientific dissemination.

Contexte de travail

The project takes place in a multidisciplinary environment combining artificial intelligence, cellular imaging, and biology.
The student will work within IBENS, in a team specialized in image analysis and deep learning.

Contraintes et risques

Screen work.