En poursuivant votre navigation sur ce site, vous acceptez le dépôt de cookies dans votre navigateur. (En savoir plus)

Understanding Neural Mechanisms of Human Motor Learning by Using Explainable AI for Time Series and Brain-Computer Interfaces M/F

This offer is available in the following languages:
- Français-- Anglais

Date Limite Candidature : jeudi 10 juillet 2025 23:59:00 heure de Paris

Assurez-vous que votre profil candidat soit correctement renseigné avant de postuler

Informations générales

Intitulé de l'offre : Understanding Neural Mechanisms of Human Motor Learning by Using Explainable AI for Time Series and Brain-Computer Interfaces M/F (H/F)
Référence : UMR7371-DMITOD-001
Nombre de Postes : 1
Lieu de travail : PARIS 06
Date de publication : jeudi 19 juin 2025
Type de contrat : CDD Doctorant
Durée du contrat : 36 mois
Date de début de la thèse : 1 novembre 2025
Quotité de travail : Complet
Rémunération : 2200 gross monthly
Section(s) CN : 26 - Cerveau, cognition et comportement

Description du sujet de thèse

This project aims to uncover neural mechanisms of motor adaptation. The tools will include advanced machine learning, mathematical modeling (dynamical systems) on existing data and conducting experiments on healthy participants performing motor tasks with simultaneous EEG recordings.

Contexte de travail

Context (Why studying this makes sense): Motor adaptation is a crucial process in human life, enabling us to adjust our movements based on sensory feedback. For instance, imagine being asked to play your favorite game of petanque with a set of balls that are heavier than usual. You would need several trials to adapt your movements to achieve your baseline performance. This adaptation relies on the sensory prediction error—the difference between the intended and actual outcomes on each trial. Understanding motor adaptation has broad applications, from rehabilitation in patients after brain or body injuries to optimizing motor skills in sports, work, and robotics (motor adaptation is essential for advanced dexterity).

Despite the ubiquity and importance of motor adaptation, it is still not fully understood, especially at the neural level.