En poursuivant votre navigation sur ce site, vous acceptez le dépôt de cookies dans votre navigateur. (En savoir plus)

M/F Mixed-signal design for efficient Energy-Based Models implementation

This offer is available in the following languages:
- Français-- Anglais

Date Limite Candidature : jeudi 17 juillet 2025 23:59:00 heure de Paris

Assurez-vous que votre profil candidat soit correctement renseigné avant de postuler

Informations générales

Intitulé de l'offre : M/F Mixed-signal design for efficient Energy-Based Models implementation (H/F)
Référence : UMR5506-GILSAS-005
Nombre de Postes : 1
Lieu de travail : MONTPELLIER
Date de publication : jeudi 26 juin 2025
Type de contrat : CDD Doctorant
Durée du contrat : 36 mois
Date de début de la thèse : 1 octobre 2025
Quotité de travail : Complet
Rémunération : 2200 gross monthly
Section(s) CN : 07 - Sciences de l'information : traitements, systèmes intégrés matériel-logiciel, robots, commandes, images, contenus, interactions, signaux et langues

Description du sujet de thèse

In the field of neuromorphic artificial intelligence, Energy-Based Models (EBMs) are experiencing growing interest due to their ability to capture relationships between variables by minimizing a single scalar function (energy function) without requiring normalization at the scale of the entire dataset. A prominent example of an EBM is certainly the Hopfield network model where the evolution of the state of each unit (neuron) is dictated by minimizing its contribution to the total energy of the system. Once equilibrium is reached (the energy minimum), the result readout can be performed.

EBMs exhibit characteristics that make them attractive for "near-physics" implementations (analog/mixed signal). Indeed, any dynamical system possessing an evolution law whose parameters can be adjusted can be used to create an EBM model performing an arbitrary task, such as image classification. An analog electrical system based on non-volatile memories is well-suited for such tasks, and some initial demonstrations show the interest of this approach for energy efficiency.

Combining these EBMs with more biologically plausible and/or locally-based learning algorithms constitutes a very promising research direction for energy-efficient and Edge AI applications: the goal here is to make these systems capable of learning per se, not just inference.

This doctoral thesis topic builds on work conducted within the laboratory, on a software framework [2] as well as contributions to algorithmics and hardware architecture [3][4][5] that are about to be the subject of a demonstrator circuit realization. This doctoral thesis will address both the question of models and training algorithms and will analyze the opportunities for analog/mixed material implementations and memristive component-based (OxRAM, FeRAM, FemFET) for storing the weights of these networks. These investigations will be conducted within the framework of the "Emergences" project [1] of the national PEPR IA program of France 2030. These investigations will be carried out in collaboration with other partners, doctoral students, and post-doctoral researchers.

Candidates must have skills in at least two of the following areas:

Machine learning and associated mathematical foundations
Embedded systems
Analog/mixed design
[1] https://emergences.pepr-ia.fr
[2] https://www.frontiersin.org/articles/10.3389/fncom.2023.1114651/full
[3] https://hal.science/lirmm-04959185/
[4] https://hal.science/lirmm-04959178/
[5] https://hal.science/hal-05098393/

Contexte de travail

The thesis will be conducted in close collaboration with other partners of the targeted project supported by the PEPR IA (Emergences project). An international collaboration with the University of Bremen is also planned, a university with which collaborative work on EBMs has been conducted for several years.

Le poste se situe dans un secteur relevant de la protection du potentiel scientifique et technique (PPST), et nécessite donc, conformément à la réglementation, que votre arrivée soit autorisée par l'autorité compétente du MESR.

Contraintes et risques

NA