En poursuivant votre navigation sur ce site, vous acceptez le dépôt de cookies dans votre navigateur. (En savoir plus)
Portail > Offres > Offre UPR8001-DIDHEN-002 - Optimisation polynomiale pour la dynamique des réseaux (CDD chercheur H/F)

Polynomial optimization for network dynamics (fixed term researcher contract M/F)

This offer is available in the following languages:
- Français-- Anglais

Date Limite Candidature : mardi 25 novembre 2025 23:59:00 heure de Paris

Assurez-vous que votre profil candidat soit correctement renseigné avant de postuler

Informations générales

Intitulé de l'offre : Polynomial optimization for network dynamics (fixed term researcher contract M/F) (H/F)
Référence : UPR8001-DIDHEN-002
Nombre de Postes : 1
Lieu de travail : TOULOUSE
Date de publication : mardi 4 novembre 2025
Type de contrat : Chercheur en contrat CDD
Durée du contrat : 24 mois
Date d'embauche prévue : 1 janvier 2026
Quotité de travail : Complet
Rémunération : Between €3041 and €3467 gross per month, depending on experience.
Niveau d'études souhaité : Doctorat
Expérience souhaitée : Indifférent
Section(s) CN : 07 - Sciences de l'information : traitements, systèmes intégrés matériel-logiciel, robots, commandes, images, contenus, interactions, signaux et langues

Missions

The project objective is to overcome the significant scalability barriers of the moment-sum-of-squares (moment-SOS) hierarchy, a powerful tool for solving non-linear, non-convex optimization problems.

Activités

The project will focus specifically on networked dynamical systems governed by nonlinear hyperbolic partial differential equations (PDEs). These models are crucial for applications like managing gas pipelines, traffic flow, and telecommunication networks. Our approach is to exploit the sparse network structure to decompose large-scale problems and leverage the theory of measure-valued solutions to handle the PDE dynamics without discretization.

The project will focus specifically on networked dynamical systems governed by nonlinear hyperbolic partial differential equations (PDEs). These models are crucial for applications like managing gas pipelines, traffic flow, and telecommunication networks. Our approach is to exploit the sparse network structure to decompose large-scale problems and leverage the theory of measure-valued solutions to handle the PDE dynamics without discretization.

Compétences

We are looking for a candidate with a PhD in Applied Mathematics, Control Theory, Optimization, or a related field. The position is flexible and can be tailored to the profiles:
- Analysis-Oriented: Strong theoretical background in functional analysis, measure theory, and convex optimization. Experience with the moment-SOS hierarchy. Expertise in PDE theory (especially hyperbolic conservation laws) is a significant plus.
- Computation-Oriented: Strong background in numerical methods for optimization, especially semidefinite programming (SDP). Experience with numerical linear algebra, polynomial bases, and code development (e.g., in Julia, Matlab, or Python). Knowledge of techniques for exploiting numerical structure (sparsity, low-rank) is highly desirable.

Contexte de travail

The MONET project is a bilateral collaboration between LAAS-CNRS (France) and FAU Erlangen-Nürnberg (Germany).

Le poste se situe dans un secteur relevant de la protection du potentiel scientifique et technique (PPST), et nécessite donc, conformément à la réglementation, que votre arrivée soit autorisée par l'autorité compétente du MESR.