En poursuivant votre navigation sur ce site, vous acceptez le dépôt de cookies dans votre navigateur. (En savoir plus)
Portail > Offres > Offre UMR9219-IRMZEN-002 - Évaluation du risque sismique des installations nucléaires : amélioration de la description du chargement sismique par des spectres de scénario et validation via un laboratoire d’essai virtuel H/F

Seismic risk assessment of nuclear installations: improved seismic load by scenario spectra and validation by a virtual test lab M/F

This offer is available in the following languages:
- Français-- Anglais

Date Limite Candidature : jeudi 6 novembre 2025 23:59:00 heure de Paris

Assurez-vous que votre profil candidat soit correctement renseigné avant de postuler

Informations générales

Intitulé de l'offre : Seismic risk assessment of nuclear installations: improved seismic load by scenario spectra and validation by a virtual test lab M/F (H/F)
Référence : UMR9219-IRMZEN-002
Nombre de Postes : 1
Lieu de travail : PALAISEAU
Date de publication : jeudi 16 octobre 2025
Type de contrat : Chercheur en contrat CDD
Durée du contrat : 24 mois
Date d'embauche prévue : 5 janvier 2026
Quotité de travail : Complet
Rémunération : Between 3081 and 3519€ brut per month
Niveau d'études souhaité : Doctorat
Expérience souhaitée : 1 à 4 années
Section(s) CN : 09 - Ingénierie des matériaux et des structures, mécanique des solides, biomécanique, acoustique

Missions

The aim of this work is to develop and implement methodologies that would improve the description of ground motion to define seismic load to be used for probabilistic seismic risk analysis (PRA) of nuclear power plants (NPPs). In the framework of seismic PRA, numerous dynamic time history analyses have to be performed to asses fragility of structures and components. The huge computational cost of high-fidelity simulations for seismic analysis prevents from testing multiple modelling options and scenarios. In consequence, the development of a surrogate is crucial for advanced probabilistic seismic risk analyses, in particular when numerous simulations are required to account for the range of potential earthquake scenarios. Such surrogate models, if they allow for accurate representations of nuclear plant and equipment and surrounding soil, offer a powerful solution for determining fragility curves for given input ground motions and for conducting parametric and probabilistic analyses. Different approaches such as neural network or other machine learning method are available and should be evaluated before implementation. The simulator can then be used to study the nocivity of natural and synthetic ground motion features and possibly improve ground motion selection strategies not only by including additional relevant seismic Intensity Measures (IMs) but also new candidates for Engineering Demand Parameters (EDPs).

Activités

- Literature review and getting familiar with software tools and numerical structural models used for risk assessment of nuclear installations (the structural numerical models for this work as well as hazard models and codes are already availabe and do not need to be developed in this research work)
- Implement the metamodel (physics-informed AI or other approach), develop a python toolbox so that the approach can be applied to other models in future
- Validation and verification steps
- Test different ways to define seismic load time histories by scenario spectra, envelope spectra, natural or synthetic accelerograms etc
- Write journal paper(s) and final report to be submitted to scientific committe of SIGMA-3 project

Compétences

Required skills
• Structural dynamics and earthquake engineering, finite element modelling
• Probability theory, stochastic process modelling, statistical tools
• Artificial Intelligence and Machine learning approaches
• Programming (python)
A first experience with the finite element code code_aster and the PSHA code openquake as well as knowledge in Engineering seismology are an appreciated plus.

Contexte de travail

The successful candidate will be hosted at IMSIA, he/she will integrate EDF Lab Paris Saclay campus during his work. The research is part of SIGMA-3 project and results will be shared with the SIGMA-3 community.