En poursuivant votre navigation sur ce site, vous acceptez le dépôt de cookies dans votre navigateur. (En savoir plus)
Portail > Offres > Offre UMR8023-YANTOD-021 - Post doc H/F " TeraHertz quantum detectors in the Ultra-strong light-matter coupling regime"

Post doc H/F " TeraHertz quantum detectors in the Ultra-strong light-matter coupling regime"

This offer is available in the following languages:
Français - Anglais

Date Limite Candidature : jeudi 24 juin 2021

Assurez-vous que votre profil candidat soit correctement renseigné avant de postuler. Les informations de votre profil complètent celles associées à chaque candidature. Afin d’augmenter votre visibilité sur notre Portail Emploi et ainsi permettre aux recruteurs de consulter votre profil candidat, vous avez la possibilité de déposer votre CV dans notre CVThèque en un clic !

Faites connaître cette offre !

General information

Reference : UMR8023-YANTOD-021
Workplace : PARIS 05
Date of publication : Thursday, June 3, 2021
Type of Contract : FTC Scientist
Contract Period : 24 months
Expected date of employment : 1 November 2021
Proportion of work : Full time
Remuneration : 2728.28 euros gross monthly for a researcher CDD (seniority less than or equal to 2 years)
Desired level of education : PhD
Experience required : Indifferent


This post-doc project is at the border between mesoscopic physics and Terahertz optoelectronics. The objective of the Post-Doc project is to explore quantum infrared detectors operating in the ultra-strong light-matter coupling regime. We will study devices where semiconductor quantum wells are integrated into electromagnetic resonators, "meta-atoms", with strongly subwavelenght electromagnetic confinement [1,2]. This geometry allows a strong reduction of the detector dark current and an improved photo-generation rate [3]. In such devices, we will explore how the presence of light-coupled states affects the electronic transport of the detector. In addition, our electromagnetic resonator behaves like a Terahertz inductance-capacitor circuit, where the capacitive parts can be reduced to nanometric dimensions. These device architectures allow the realization of the dynamical Coulomb blocking [4], where the charge energy of a single electron e² / 2C becomes comparable to the energy of the resonator of the meta-atom ћ \ omega_m. This effect will be exploited as a completely new approach to detect the quantum properties of electromagnetic modes coupled by electronic transport. Besides semiconductor layers, we also plan to exploit new 2D materials such as hexagonal boron nitride and others.
[1] M. Jeannin, et al. “Ultra-Strong Light-Matter Coupling in Deeply Subwavelength THz LC
resonators ”, ACS Photonics 6 (5) 1207-1215 (2019).
[2] M. Jeannin, et al. “Absorption engineering in an ultra-subwavelength quantum system”, Nano Lett. 20 (6) 4430-4436 (2020).
[3] D. Palaferri, et al. “Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers”, Nature 556, pages 85–88 (2018).
[4] M. H. Devoret, et al. “Effect of the electromagnetic environment on the Coulomb blockade in ultrasmall tunnel junctions ”, Phys. Rev. Lett. 64, 1824 (1990).


-Design of meta-materials compatible with the injection / read-out of electric current in semiconductor devices.
-Manufacture in a clean room of absorbent zones based on semiconductor quantum wells inserted in metamaterials. Other 2D materials are also envisioned.
-Optical and electrical characteristics of low temperature devices.
-Theoretical modeling of data in order to understand the links between electronic transport and coupled light-matter states.


-Previous experience with intersubband devices is desirable (I.e. QCL, QWIP, QCD)
-Clean room nano-fbarication: optical and electronic lithography, dry etch (ICP), fabrication protocols for of III-V devices,
- Optical and electronic characterizations of nano-devices.

Work Context

This project is funded by the ERC grant “UNIQUE” (https://erc.europa.eu/projects-figures/erc-fundedprojects/results?search_api_views_fulltext=todorov). The aim of this project is to explore the quantum effects of the ultra-strong light-matter coupling regime. The project will take place in the QUAD team of the Physics Laboratory of the Ecole Normale Supérieure, located in the Latin Quarter of Paris. In addition, the post-doc will benefit from full access to the clean rooms of the Paris Center consortium.

Constraints and risks

Standard risks associated with clean room nanofabrication. Risk training will be provided.

Additional Information



We talk about it on Twitter!