En poursuivant votre navigation sur ce site, vous acceptez le dépôt de cookies dans votre navigateur. (En savoir plus)
Portail > Offres > Offre UMR8023-VINHAK-009 - Post-doctorat en neurosciences computationnelles/physique statistique à l'École normale supérieure (H/F)

Post-doctoral position in Computational Neuroscience/Statistical Physics at the Ecole Normale Supérieure, Paris, France (M/F)

This offer is available in the following languages:
- Français-- Anglais

Date Limite Candidature : vendredi 18 avril 2025 23:59:00 heure de Paris

Assurez-vous que votre profil candidat soit correctement renseigné avant de postuler

Informations générales

Intitulé de l'offre : Post-doctoral position in Computational Neuroscience/Statistical Physics at the Ecole Normale Supérieure, Paris, France (M/F) (H/F)
Référence : UMR8023-VINHAK-009
Nombre de Postes : 1
Lieu de travail : PARIS 05
Date de publication : vendredi 28 mars 2025
Type de contrat : Chercheur en contrat CDD
Durée du contrat : 24 mois
Date d'embauche prévue : 1 septembre 2025
Quotité de travail : Complet
Rémunération : between 3081 and 4757 euros bruts per month
Niveau d'études souhaité : Doctorat
Expérience souhaitée : Indifférent
Section(s) CN : 01 - Interactions, particules, noyaux du laboratoire au cosmos

Missions

We seek to recruit a post-doctoral research associate in Computational Neuroscience to work on a research program funded by the French National Research Agency (ANR) on the “Neural mechanisms of iterative learning”. The algorithms and biophysical mechanisms underlying learning in biological neural systems are still poorly understood and the fundamental problem of “credit assignment” - how the correct neurons are modified to perform a difficult task such as optimising a complex movement - remains unsolved. An ideal preparation in which to study this problem using an interdisciplinary approach is the cerebellum, because it combines a simple, regular anatomical structure with well characterised model behaviours.

Activités

The aim of the project will be to explore theoretically and with the help of numerical simulations, different proposals for the biological implementation of credit assignment and learning, particularly in the context of cerebellar learning.

Compétences

Applicants are expected to have a strong background in statistical physics, nonlinear dynamics or computational neuroscience, with a clear interest in the study of biological systems. They should be able to work interactively in a collaborative research environment including physicists and biologists.

Contexte de travail

The project will be pursued as a collaboration between the team of V Hakim for the theoretical aspects and the team of B Barbour for the experimental counterpart.

Contraintes et risques

None identified