Informations générales
Intitulé de l'offre : Post-doc, capteur quantique (H/F)
Référence : UMR7010-LAULAB-008
Nombre de Postes : 1
Lieu de travail : NICE
Date de publication : mercredi 15 mars 2023
Type de contrat : CDD Scientifique
Durée du contrat : 24 mois
Date d'embauche prévue : 5 juin 2023
Quotité de travail : Temps complet
Rémunération : Between 2833.40 and 3257.06 €euros per month gross
Niveau d'études souhaité : Doctorat
Expérience souhaitée : Indifférent
Section(s) CN : Micro and nanotechnologies, micro and nanosystems, photonics, electronics, electromagnetism, electrical energy
Missions
the aim of the post-doc position relies on developing a new generation of quantum-enhanced integrated biosensors build on a hybrid photonic platform, composed of lithium niobate (LN) and laser written glass (LWG).
Activités
We will aggregate all building blocks (quantum light generator, transducer, routing elements) in a multi-functional quantum photonic “lab-on-chip” to achieve sensitivity beyond the standard quantum limit and fulfill the promise of QM.
Compétences
The two-years position are fully funded (~2.6 k€/month). The Post-doc position will be conducted at the Institut de Physique de Nice for developing and testing the quantum sensor.
Applicants should have :
• An excellent first degree and completed doctorate (or close to completion) in physics.
• A strong background in quantum optics and electronics.
• The ability to perform excellent research in photonics (quantum, nonlinear, integrated) evidenced by a strong publication record in international peer-reviewed journals.
• Ability to work in interdisciplinary projects (experiments, theory).
• Evidence of outstanding ability to work independently, and as an active collaborative member of a research team, who is well organized and self-motivated, while working cooperatively at all levels. Be highly motivated and have a strong commitment to research.
• Good communication skills both orally and in written English, suitable for the preparation of scientific publications in world-class journals and presentation of research at international conferences.
Contexte de travail
Quantum metrology (QM) is one of the most promising applications of quantum technologies, allowing the measurement of physical quantities with unprecedented accuracy and precision. Generally, the precision of physical measurements is limited by statistical uncertainties which originate from fundamental laws of physics. As the most successful fundamental theory that leads to the best achievable precision, quantum mechanics forms the basis of the continuously growing area of QM. QM attracted significant attention in the last few years with notable applications across various topics, ranging from earth exploration to molecular sensing and bio-imaging.
The current sanitary and environmental crises call for the development of high-precision quantum sensors to characterize biological and chemical systems. The most promising approach for these applications would be using quantum photonics systems. These systems leverage the ability of photons to penetrate aqueous media and capture specific chemical information while not damaging fragile biological specimens. Thus, harnessing novel methods for manipulating quantum light for developing novel quantum sensors is an appealing opportunity that would enable ultra-sensitive detection and non-destructive measurements.
From a technological perspective, the development of quantum photonic sensors is facilitated by integrated quantum photonics platforms. These platforms yield scalable production of stable, compact, and low-cost devices.
The generation and manipulation of quantum photonic states on-chip, and study of their interaction with the biological or chemical analyte, is an area of active scientific research and an emerging topic among quantum technologies. However, the implementation of integrated photonics platforms still stands as an ambitious task with several technological roadblocks that hinder the full potential of QM. fondamentale la plus aboutie permettant d'obtenir la meilleure précision possible, constitue la base du domaine de la MQ, qui ne cesse de s'étendre. La MQ a attiré l'attention au cours des dernières années avec des applications notables dans divers domaines, allant de l'exploration de la terre à la détection moléculaire et à la bio-imagerie.
Les crises sanitaires et environnementales actuelles exigent le développement de capteurs quantiques de haute précision pour caractériser les systèmes biologiques et chimiques. L'approche la plus prometteuse pour ces applications consisterait à utiliser des systèmes de photonique quantique. Ces systèmes exploitent la capacité des photons à pénétrer les milieux aqueux et à capturer des informations chimiques spécifiques sans endommager les fragiles spécimens biologiques. Ainsi, l'exploitation de nouvelles méthodes de manipulation de la lumière quantique pour développer de nouveaux capteurs quantiques est une opportunité intéressante qui permettrait une détection ultra-sensible et des mesures non destructives.
D'un point de vue technologique, le développement de capteurs photoniques quantiques est facilité par des plateformes intégrées de photonique quantique. Ces plateformes permettent une production évolutive de dispositifs stables, compacts et peu coûteux.