En poursuivant votre navigation sur ce site, vous acceptez le dépôt de cookies dans votre navigateur. (En savoir plus)
Portail > Offres > Offre SNC9138-SRDOST-009 - Poste d'Assistant(e) de Recherche - H/F

Research Assistant Position - M/F

This offer is available in the following languages:
- Français-- Anglais

Date Limite Candidature : mercredi 1 avril 2026 00:00:00 heure de Paris

Assurez-vous que votre profil candidat soit correctement renseigné avant de postuler

Informations générales

Intitulé de l'offre : Research Assistant Position - M/F (H/F)
Référence : SNC9138-SRDOST-009
Nombre de Postes : 1
Lieu de travail : PARIS 05
Date de publication : mercredi 4 février 2026
Type de contrat : IT en contrat CDD
Durée du contrat : 12 mois
Date d'embauche prévue : 1 septembre 2026
Quotité de travail : Complet
Rémunération : 2 570 euros
Niveau d'études souhaité : BAC+5
Expérience souhaitée : Indifférent
BAP : A - Sciences du vivant, de la terre et de l'environnement
Emploi type : Ingenieure ou ingenieur biologiste en traitement de donnees

Missions

The team led by Srdjan Ostojic at École Normale Supérieure Paris is recruiting a Research Assistant to study learning dynamics in Recurrent Neural Network (RNN) models of cognitive tasks.

Activités

- Implementation and analysis of RNN models in Python using deep learning frameworks
- Design and execution of computational experiments to study learning dynamics
- Development of theoretical models and mathematical analyses of learning processes
- Collaboration with team members on data analysis and interpretation
- Writing scientific publications for peer-reviewed journals
- Presentation of results at team meetings and scientific conferences

Compétences

## REQUIRED QUALIFICATIONS
**Education:**
- Master's degree (M2) or equivalent in Physics, Mathematics, Computer Science, Neuroscience, or related field

**Technical Skills:**
- Proficiency in Python programming and machine learning libraries (PyTorch, TensorFlow, JAX)
- Strong mathematical background: linear algebra, analysis, dynamical systems
- Knowledge of neural networks and deep learning principles
- Experience with numerical methods and scientific computing
- Analytical and problem-solving abilities

**Language Skills:**
- English: C1 level minimum (reading, writing, speaking)


## DESIRED QUALIFICATIONS
- Previous experience with trained neural networks
- Background in theoretical neuroscience or computational biology
- Knowledge of dynamical systems theory
- Experience with high-performance computing and cluster environments

Contexte de travail

The researcher will join the Group for Neural Theory at ENS, within a dynamic research environment. The team is part of the Laboratory of Cognitive and Computational Neuroscience (LNC2). This position is part of the ERC Synergy Chronology project, a collaboration with the experimental teams of Brice Bathellier (Institut Audition), Virginie van Wassenhove (NeuroSpin), and Mehrdad Jazayeri (MIT).

Contraintes et risques

No specific constraints.