Informations générales
Intitulé de l'offre : 2D metal-organic frameworks for opto-electronic sensing (M/W) (H/F)
Référence : UMR7198-MARTAI-093
Nombre de Postes : 1
Lieu de travail : NANCY
Date de publication : vendredi 10 novembre 2023
Type de contrat : CDD Doctorant/Contrat doctoral
Durée du contrat : 36 mois
Date de début de la thèse : 2 janvier 2024
Quotité de travail : Temps complet
Rémunération : 2 135,00 € gross monthly
Section(s) CN : Materials, nanomaterials and processes chemistry
Description du sujet de thèse
The first step consists in the analysis of existing two-dimensional metak-organic frameworks (2D MOFs) followed by their selection using analytical tools and machine learning. For the selected structures, it is then necessary to carry out a series of solvothermal syntheses. The resulting MOFs should be structurally characterized using powder and single crystal X-ray diffraction analysis, FTIR and Raman spectroscopy. Then, for the obtained 2D MOFs, it is necessary to carry out a series of mechanical exfoliation on different substrates.
The resulting nm thick MOFs should be characterized optically using confocal reflectance, transmission and luminescence spectroscopy. Analysis of structural stability under normal conditions is also included in the list of project activities.
At the final step, it is necessary to create a prototype of an optical/electronic sensor, in which 2D MOF layers should react optically or electronically upon contact with analyte molecules (organic solvents and gases).
Since the discovery of graphene and thanks to concomitant revolution in the field of two-dimensional (2D) materials, modern technology has made significant progress in the miniaturization of micro and optoelectronics devices [1]. Today, the library of 2D materials is significantly enriched mainly with inorganics, demonstrating thickness-dependent magnetic, electronic, optical, mechanical, chemical, and other properties [2]. Nevertheless, the progress has also been made among 2D organic and metal-organic materials with a thickness up to a monolayer. Over the past decade, a series of 2D covalent, hydrogen bonded, and metalorganic framework (MOF) layers have been obtained, possessing promising topological, optical, thermal, electronic, magnetic, catalytic, sorption, and mechanical properties [3].
An important asset of 2D metal-organic materials, compared with their inorganic analogues, is (i) the complex surface chemistry, which provides the catalytic and separation activity at the monolayer level; (ii) complex unit cells with different weak interactions allowing to reversibly tune the electronic and mechanical properties; and (iii) a great potential for tuning the material parameters (such as the bandgap, electronic mobility, conductivity, etc.) due to the varied composition and the structure. However, unlike the same inorganic counterparts, the fabrication of mono and several layers of 2D metal-organic materials is still associated with fundamental challenges related with the obtaining a uniform and smooth layer of a large aspect (width-to-thickness) ratio. The widespread approaches to fabricate such layers (from self-assembly to sonication), with a number of exceptions [4] are usually limited to obtaining microcrystalline layers with an average aspect ratio of 500:1. In turn, this limits further lab-to-fab transfer of multifunctional 2D MOF layers for various application scopes.
[1] a) Y. Liu, X. Duan, H.-J. Shin, S. Park, Y. Huang, X. Duan, Nature 2021, 591, 43; b) Y. Liu, Y. Huang, X. Duan, Nature 2019, 567, 323–333; c) S. Das, A. Sebastian, E. Pop, C. J. McClellan, A. D. Franklin, T. Grasser, T. Knobloch, Y. Illarionov, A. V. Penumatcha, J. Appenzeller, Z. Chen, W. Zhu, I. Asselberghs, L.-J. Li, U. E. Avci, N. Bhat, T. D. Anthopoulos, R. Singh, Nature Electron. 2021, 4, 786–799.
[2] a) A. Chaves, J. G. Azadani, H. Alsalman, D. R. da Costa, R. Frisenda, A. J. Chaves, S. H. Song, Y. D. Kim, D. He, J. Zhou, npj 2D Mater. Appl. 2020, 4, 1; b) M. Velický, P. S. Toth, Appl. Mater. Today 2017, 8, 68.
[3] a) Z. F. Wang, N. Su, F. Liu, Nano Lett. 2013, 13, 2842; b) Y.-W. Zhao, L.-E. Guo, F.-Q. Zhang, J. Yao, X.-M. Zhang, ACS Appl. Mater. Interfaces 2021, 13, 20821; c) L. Han, D. Zheng, S. Chen, H. Zheng, J. Ma, Small 2018, 14, 1703873; d) K. Pei, S. Ji, M. Zhao, C. Li, P. Luo, L. Jiang, Y. Zhao, T. Zhai, Adv. Funct. Mater. 2021, 31, 2106160; e) D. Kottilil, M. Gupta, S. Lu, A. Babusenan, W. Ji, Adv. Mater. 2023, 35, 2209094; f) A. M. Evans, A. Giri, V. K. Sangwan, S. Xun, M. Bartnof, C. G. Torres Castanedo, H. B. Balch, M. S. Rahn, N. P. Bradshaw, E. Vitaku, Nat. Mater. 2021, 20, 1142; g) J. Nicks, K. Sasitharan, R. R. R. Prasad, D. J. Ashworth, J. A. Foster, Adv. Funct. Mater. 2021, 31, 2103723; h) N. Shi, J. Zhang, Z. Ding, H. Jiang, Y. Yan, D. Gu, W. Li, M. Yi, F. Huang, S. Chen, Adv. Funct. Mater. 2022, 32, 2110784; i) M. Cao, C. Zhang, Z. Cai, C. Xiao, X. Chen, K. Yi, Y. Yang, Y. Lu, D. Wei, Nature Commun. 2019, 10, 756; j) J. López-Cabrelles, S. Mañas-Valero, I. J. Vitórica-Yrezábal, M. Šiškins, M. Lee, P. G. Steeneken, H. S. J. van der Zant, G. Minguez Espallargas, E. Coronado, J. Am. Chem. Soc. 2021, 143, 18502; k) R. Dong, M. Pfeffermann, H. Liang, Z. Zheng, X. Zhu, J. Zhang, X. Feng, Angew. Chemie Int. Ed. 2015, 54, 12058; l) D. Yang, S. Zuo, H. Yang, Y. Zhou, Q. Lu, X. Wang, Adv. Mater. 2022, 34, 2107293; m) T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F. X. Llabrés i Xamena, J. Gascon, Nat. Mater. 2015, 14, 48; n) X. Li, H.-S. Xu, K. Leng, S. W. Chee, X. Zhao, N. Jain, H. Xu, J. Qiao, Q. Gao, I.-H. Park, S. Y. Quek, U. Mirsaidov, K. P. Loh, Nature Chem. 2020, 12, 1115–1122.
[4] a) J. Shen, Y. Cai, C. Zhang, W. Wei, C. Chen, L. Liu, K. Yang, Y. Ma, Y. Wang, C.-C. Tseng, Nat. Mater. 2022, 21, 1183; b) J. Dong, L. Liu, C. Tan, Q. Xu, J. Zhang, Z. Qiao, D. Chu, Y. Liu, Q. Zhang, J. Jiang, Nature 2022, 602, 606; c) Y. Shen, B. Shan, H. Cai, Y. Qin, A. Agarwal, D. B. Trivedi, B. Chen, L. Liu, H. Zhuang, B. Mu, Adv. Mater. 2018, 30, 1802497; d) X. Wang, C. Chi, K. Zhang, Y. Qian, K. M. Gupta, Z. Kang, J. Jiang, D. Zhao, Nat. Commun. 2017, 8, 1; e) B. Wang, N. Wang, X. Li, R. Zhou, W. Xing, J. Memb. Sci. 2022, 645, 120177; f) J. López-Cabrelles, S. Mañas-Valero, I. J. Vitórica-Yrezábal, P. J. Bereciartua, J. A. Rodríguez-Velamazán, J. C. Waerenborgh, B. J. C. Vieira, D. Davidovikj, P. G. Steeneken, H. S. J. van der Zant, Nat. Chem. 2018, 10, 1001.
Contexte de travail
The Institut Jean Lamour (IJL) is a joint research unit of CNRS and Université de Lorraine. Focused on materials and processes science and engineering, it covers: materials, metallurgy, plasmas, surfaces, nanomaterials and electronics. IJL has 263 permanent staff (30 researchers, 134 teacher-researchers, 99 IT-BIATSS) and 394 non-permanent staff (182 doctoral students, 62 post-doctoral students / contractual researchers and more than 150 trainees), of 45 different nationalities.
Partnerships exist with 150 companies and our research groups collaborate with more than 30 countries throughout the world. Its exceptional instrumental platforms are spread over 4 sites; the main one is located on Artem campus in Nancy.
Le poste se situe dans un secteur relevant de la protection du potentiel scientifique et technique (PPST), et nécessite donc, conformément à la réglementation, que votre arrivée soit autorisée par l'autorité compétente du MESR.
Contraintes et risques
/
Informations complémentaires
/