En poursuivant votre navigation sur ce site, vous acceptez le dépôt de cookies dans votre navigateur. (En savoir plus)

PhD thesis in surface physics and advanced microscopy (M/F)

This offer is available in the following languages:
Français - Anglais

Date Limite Candidature : lundi 23 mai 2022

Assurez-vous que votre profil candidat soit correctement renseigné avant de postuler. Les informations de votre profil complètent celles associées à chaque candidature. Afin d’augmenter votre visibilité sur notre Portail Emploi et ainsi permettre aux recruteurs de consulter votre profil candidat, vous avez la possibilité de déposer votre CV dans notre CVThèque en un clic !

General information

Reference : UMR6634-CHRVUR-038
Date of publication : Monday, May 2, 2022
Scientific Responsible name : Lorenzo RIGUTTI
Type of Contract : PhD Student contract / Thesis offer
Contract Period : 36 months
Start date of the thesis : 1 October 2022
Proportion of work : Full time
Remuneration : 2 135,00 € gross monthly

Description of the thesis topic

Exploration of experimental methods for quantification and imaging of hydrogen reactions by atom probe tomography

Hydrogen is gathering increasing attention due to its importance as an energy vector. Beyond this aspect, it plays an important role in determining the structural properties of metals, and interacts with functional defects in semiconductors.
The potential of advanced analysis and imaging techniques for an in-depth study of hydrogen - an often elusive element for many microanalysis techniques - is linked to their ability to analyze chemical species present on the surface or in the volume of a sample, allowing their localization and chemical identification. The Tomographic Atom Probe allows the detection of single atoms and their localization in 3D within a nanometric volume. However, many problems exist concerning hydrogen because it is generally found in its gaseous form H2 within the analysis chambers and represents a spurious signal that degrades the chemical sensitivity of the analysis [2,3]. Moreover, hydrogen also participates in surface chemical reactions.
This PhD topic proposes to develop methodological approaches that can target the quantification of hydrogen, its localization, but also the temporal spatial imaging of phenomena involving chemical reactions that would take place at the surface of the analyzed samples.
The candidate will develop techniques for sample preparation and analysis by Atom Probe Tomography, as well as methods for the exploitation of data from these experiments, while studying the theory behind field evaporation and the basics of high field chemistry. He/she should have a good knowledge of solid state physics and/or surface chemistry.
This thesis is financed within the framework of a Labex EMC3 project ("Quantification and advanced physico-chemical imaging: application to hydrogen in materials") - (QuantyPhy)

[1] Seidman, D., & Stiller, K. (2009). An Atom-Probe Tomography Primer. MRS Bulletin, 34(10), 717-724. doi:10.1557/mrs2009.194 https://web.archive.org/web/20190503002941id_/https://www.cambridge.org/core/services/aop-cambridge-core/content/view/E701B95B9EEA8BC4F0F91477C7C191C9/S088376940000378Xa.pdf/div-class-title-an-atom-probe-tomography-primer-div.pdf
[2] Sundell, G., Thuvander, M., & Andrén, H. O. (2013). Hydrogen analysis in APT: methods to control adsorption and dissociation of H2. Ultramicroscopy, 132, 285-289.
[3] L. Rigutti et al., “Surface Microscopy of Atomic and Molecular Hydrogen from Field-Evaporating Semiconductors,” J. Phys. Chem. C, vol. 125, no. 31, pp. 17078–17087, Aug. 2021, doi: 10.1021/acs.jpcc.1c04778

Work Context

The GPM (Materials Physics Group, UMR CNRS 6634) is structured into 5 departments: Materials-Aging-Mechanics, Scientific Instrumentation, Nanosciences, Disordered Systems-Polymers and Nano-Health-Physics. It brings together 160 staff, including 60 Teachers-Researchers/Researchers, 30 ITAs and 70 PhD students/Postdocs/Trainees. The laboratory is located on the Campus Sciences et Ingénierie Rouen Normandie (in Saint Etienne du Rouvray), within the University of Rouen Normandie and INSA Rouen Normandie (7000m2).
The recruited doctoral student will be attached to the scientific instrumentation department, which includes 5 teacher-researchers, 5 engineers,, 3 post-doctoral students and 5 doctoral students.

Constraints and risks

Risks related to Lasers, Cryogenics, Chemical Treatments (use of acids and bases possible)

Additional Information

subject to confirmation of funding by the Labex EMC3 within the framework of the QuantiPHy project.

We talk about it on Twitter!