En poursuivant votre navigation sur ce site, vous acceptez le dépôt de cookies dans votre navigateur. (En savoir plus)

Biophysical modeling of the auto-assembly driving bacterial DNA segregation (M/W)

This offer is available in the following languages:
- Français-- Anglais

Date Limite Candidature : vendredi 30 juin 2023

Assurez-vous que votre profil candidat soit correctement renseigné avant de postuler. Les informations de votre profil complètent celles associées à chaque candidature. Afin d’augmenter votre visibilité sur notre Portail Emploi et ainsi permettre aux recruteurs de consulter votre profil candidat, vous avez la possibilité de déposer votre CV dans notre CVThèque en un clic !

Informations générales

Intitulé de l'offre : Biophysical modeling of the auto-assembly driving bacterial DNA segregation (M/W) (H/F)
Référence : UMR5221-JEAWAL-002
Nombre de Postes : 1
Lieu de travail : MONTPELLIER
Date de publication : jeudi 11 mai 2023
Type de contrat : CDD Doctorant/Contrat doctoral
Durée du contrat : 36 mois
Date de début de la thèse : 1 octobre 2023
Quotité de travail : Temps complet
Rémunération : 2 135,00 € gross monthly
Section(s) CN : Physical theories: methods, models and applications

Description du sujet de thèse

In bacteria, DNA segregation mainly relies on ParABS systems to faithfully partition DNA molecules at cell division. Our objective is to achieve a holistic, quantitative and molecular understanding of the mechanism driving the main bacterial DNA segregation system by using integrative and multidisciplinary approaches. We will perform biophysical modeling using the tools of theoretical physics. Our collaborators in the team of Jean-Yves BOUET (CBI, Toulouse) will perform experiments in genetics and genomics, cell biology and biochemistry to test our predictions. Built on an established collaboration, we intent to decipher the mechanisms that (i) drive the auto-assembly of the nucleoprotein complexes (ParB proteins) involved in the partition of the archetypical ParABS system of the plasmid F in Escherichia coli. This part involves a Liquid-Liquid phase separation of proteins on a polymer, and (ii) the subsequent splitting and positioning of complexes at either side of the division plane (through ParA proteins). This will be done with both non-linear systems and stochastic approaches. We will investigate the cross talk between two dynamic auto-assemblies of ParA and ParB that ensure DNA segregation, and also on the formation and inheritance of membrane-less organelles. Objectives. This project is at the interface between polymer physics, colloid physics and active matter. We will first consider a Lattice Gas-like (LG) models to characterize the phase transition leading to the formation of the ParBS complexes. We will subsequently embed this LG onto a supercoiled polymer to decipher the rôle of the bridging and polymer compaction on this phase transition. We will finally add a second species of particles to this lattice gas to model the splitting of two equilibrium droplets through the actions of the protein ParB. We will use both numerical and analytical approaches.

Contexte de travail

The host team Complex System and non Linear Physics is composed by 5 permanent researcher, PhD students and postdoctoral researched working collaboratively on various topic of bacterial processes from the cellular scale with DNA organization and dynamics, genetic translation, flagelar motors motion up to the scale of population dynamics. We have an established collaboration with Jean-Yves BOUET since ten years in Toulouse where experiments will be conducted.

Le poste se situe dans un secteur relevant de la protection du potentiel scientifique et technique (PPST), et nécessite donc, conformément à la réglementation, que votre arrivée soit autorisée par l'autorité compétente du MESR.

Contraintes et risques

The applicant will display a background in theoretical physics. He/she will have skills in numerical simulations (e.g., Monte Carlo methods) and in developing analytical calculations. A strong interest in modeling biological processes will be needed.