En poursuivant votre navigation sur ce site, vous acceptez le dépôt de cookies dans votre navigateur. (En savoir plus)

PhD position "Effect of biasing on plasma equlibrium" M/F

This offer is available in the following languages:
- Français-- Anglais

Date Limite Candidature : jeudi 26 juin 2025 23:59:00 heure de Paris

Assurez-vous que votre profil candidat soit correctement renseigné avant de postuler

Informations générales

Intitulé de l'offre : PhD position "Effect of biasing on plasma equlibrium" M/F (H/F)
Référence : UMR5213-DELDAL-028
Nombre de Postes : 1
Lieu de travail : TOULOUSE
Date de publication : jeudi 5 juin 2025
Type de contrat : CDD Doctorant
Durée du contrat : 36 mois
Date de début de la thèse : 1 octobre 2025
Quotité de travail : Complet
Rémunération : 2200 gross monthly
Section(s) CN : 10 - Milieux fluides et réactifs : transports, transferts, procédés de transformation

Description du sujet de thèse

In this PhD project we propose to take advantage of the complementing tools developed at Laplace, namely analytical models and particle in cell codes, to examine the physics of electrode biasing in more detail. The plan will be to start with a simple academic plasma configuration in which models and simulations can be confronted straightforwardly, before progressively moving towards more complex configurations, an eventually confronting results with experimental data. The proposed PhD position is indeed offered as part of the ANR project Cantaloupe gathering colleagues in Lyon (LPENSL), Marseille (PIIM) and Toulouse (Laplace & IRAP), which will offer opportunities to confront results with data from the VKP and Mistral experiments. This broader project, studying centrifugal instabilities as driven for instance in the lab through biasing, will also offer a particularly stimulating
environment for the student to work in.

Contexte de travail

The ability to control the profile of the plasma potential in the direction perpendicular to the magnetic field in a magnetized plasma opens the way to controlling the cross-field drift. In cylindrical and toroidal devices, this notably opens a way to controlling respectively the azimuthal and poloidal plasma rotation. For these reasons, the question of electric field control in magnetized plasma is of importance both to understand basic physics processes, including rotating instabilities, and for a number
of applications, such as magnetic confinement fusion, electric space propulsion and plasma mass separation [1].
One long-proposed option to affect the plasma potential is to use electrically biased electrodes positioned at the edge of the plasma. Although conceptually simple, there are a number of effects which can limit the effectiveness of this control scheme [2]. One key element is the formation of a sheath in front of the biased electrode, which in turn controls the current reaching the biased electrode. Another is the plasma perpendicular conductivity, which sets an upper limit on the perpendicular voltage drop the plasma can support. Simple models have been proposed to capture these effects, with encouraging results, but also clear limitations [3]. Meanwhile, kinetic modelling via particle in cell simulations have confirmed certain trends in particular plasma regimes and plasma configurations [4].
[1] I. Kaganovich et al. (2019), Phys. Plasmas, 27, 120601
[2] R. Gueroult, J.-M. Rax and N. J. Fisch (2019), Phys. Plasmas, 26, 122106
[3] B. Trotabas and R. Gueroult (2022), Plasma Sources Sci. Technol., 31, 025001
[4] G. Fubiani et al. (2021), Phys. Plasmas, 28, 063503

Le poste se situe dans un secteur relevant de la protection du potentiel scientifique et technique (PPST), et nécessite donc, conformément à la réglementation, que votre arrivée soit autorisée par l'autorité compétente du MESR.

Informations complémentaires

Candidate education - M2 Physics / plasma / astrophysics