En poursuivant votre navigation sur ce site, vous acceptez le dépôt de cookies dans votre navigateur. (En savoir plus)
Portail > Offres > Offre UMR9197-ODILEC2-079 - chercheur-se post-doctorant H/F

post-doctoral researcher H/F

This offer is available in the following languages:
Français - Anglais

Date Limite Candidature : vendredi 29 janvier 2021

Assurez-vous que votre profil candidat soit correctement renseigné avant de postuler. Les informations de votre profil complètent celles associées à chaque candidature. Afin d’augmenter votre visibilité sur notre Portail Emploi et ainsi permettre aux recruteurs de consulter votre profil candidat, vous avez la possibilité de déposer votre CV dans notre CVThèque en un clic !

Faites connaître cette offre !

General information

Reference : UMR9197-ODILEC2-079
Workplace : GIF SUR YVETTE
Date of publication : Friday, January 08, 2021
Type of Contract : FTC Scientist
Contract Period : 11 months
Expected date of employment : 1 February 2021
Proportion of work : Full time
Remuneration : salary between 3936 € and 4143 € gross monthly, according to experience
Desired level of education : PhD
Experience required : 5 to 10 years


Conduct a project program on the neural mechanisms of decision making in a navigation model in the Drosophila larva.


- lead a research team
- decide on experimental strategies
- conduct experiments
- interpret the results
- present the results at a conference
- writing publications
- Coaching students and ITAs on the subject


NeuroPSI is looking for a very high level candidate, able to work in a team, with a strong competence in neurosciences and particularly in neurogenetics, and a record of publications whose quality allows us to consider recruiting for a research or teacher-researcher position within the next 2-3 years.

Work Context

The work is carried out in the Cognitive Neurosciences and Networks Department of the Paris-Saclay Institute of Neurosciences. The main scientific objective of NeuroPSI is to understand the nature and logic of the neural circuits that control the behavior of animals when they interact with their environment. Various animal models are used and experimental and theoretical approaches are combined to understand how different types of neural architectures can perform brain tasks. The projects aim to determine how cellular interactions lead to neural populations, how these populations assemble into functional circuits and how these circuits operate to integrate different sensory modalities, generate behaviors and control cognitive functions. The studies also use comparative and genetic approaches to determine how the forces of evolution shape the brain and create individual brain diversity in natural populations.

We talk about it on Twitter!