En poursuivant votre navigation sur ce site, vous acceptez le dépôt de cookies dans votre navigateur. (En savoir plus)
Portail > Offres > Offre UMR8190-MAYGEO-001 - Ingénieur·e d'études (H/F) sur la détection de cyclone à partir des données de l'instrument IASI

Research engineer (M / F) on cyclone detection using data from the IASI instrument

This offer is available in the following languages:
Français - Anglais

Date Limite Candidature : mardi 14 décembre 2021

Assurez-vous que votre profil candidat soit correctement renseigné avant de postuler. Les informations de votre profil complètent celles associées à chaque candidature. Afin d’augmenter votre visibilité sur notre Portail Emploi et ainsi permettre aux recruteurs de consulter votre profil candidat, vous avez la possibilité de déposer votre CV dans notre CVThèque en un clic !

Faites connaître cette offre !

General information

Reference : UMR8190-MAYGEO-001
Workplace : PARIS 05
Date of publication : Tuesday, November 23, 2021
Type of Contract : FTC Technical / Administrative
Contract Period : 12 months
Expected date of employment : 17 January 2022
Proportion of work : Full time
Remuneration : from 2172.75 € gross monthly, according to experience
Desired level of education : 5-year university degree
Experience required : Indifferent


Applications are sought for a research engineer within the IASI team at LATMOS.
The objective of the project is to detect cyclones using data from the IASI instrument. The work will consist of three phases, (i) a methodological exploration (ii) analysis and construction of the dataset, labeling (iii) learning and validation of the model, writing of scientific articles and scientific communication


- Bibliography on cyclone detection in atmospheric satellite data and machine learning methods used.
- Four million spectra are measured by IASI instruments daily (17 Tb of data per year). The data will be used to build the dataset that will serve as input to the model. The HURDAT database will be used for data labeling.
- It is planned to use the YOLO model developed for object detection but another model could be tested.
- The implementation will take place on the Jean Zay supercomputer.
- The results of the model should be analyzed and optimized.
- Presentation of the results of the work in team meetings, seminars and conferences.


- Master in data analysis and machine learning methods
- excellent knowledge of Python and AI libraries
- knowledge of the Linux environment
- experience in handling large datasets
- communication skills, written and oral, in English
- scientific curiosity, rigor and autonomy

Work Context

This project received funding from the European Research Council (ERC) under the Horizon 2020 and Innovation program of the European Union (grant agreement n ° 742909).
The project will be supervised by Maya George and Cathy Clerbaux at LATMOS, Sorbonne University, Campus Pierre and Marie Curie.

Constraints and risks


Additional Information


We talk about it on Twitter!