En poursuivant votre navigation sur ce site, vous acceptez le dépôt de cookies dans votre navigateur. (En savoir plus)
Portail > Offres > Offre UMR7329-QUEBLE-003 - H/F Chercheur en analyse de signaux géodésiques par Deep Learning

M/W Researcher in Deep Learning analysis of geodetic signals

This offer is available in the following languages:
- Français-- Anglais

Date Limite Candidature : lundi 5 juin 2023

Assurez-vous que votre profil candidat soit correctement renseigné avant de postuler. Les informations de votre profil complètent celles associées à chaque candidature. Afin d’augmenter votre visibilité sur notre Portail Emploi et ainsi permettre aux recruteurs de consulter votre profil candidat, vous avez la possibilité de déposer votre CV dans notre CVThèque en un clic !

Informations générales

Intitulé de l'offre : M/W Researcher in Deep Learning analysis of geodetic signals (H/F)
Référence : UMR7329-QUEBLE-003
Nombre de Postes : 1
Lieu de travail : VALBONNE
Date de publication : lundi 15 mai 2023
Type de contrat : CDD Scientifique
Durée du contrat : 24 mois
Date d'embauche prévue : 1 octobre 2023
Quotité de travail : Temps complet
Rémunération : From 2833 to 4003 € (gross salary), depending on experience
Niveau d'études souhaité : Niveau 8 - (Doctorat)
Expérience souhaitée : Indifférent
Section(s) CN : Earth and telluric planets: structure, history, models

Missions

Develop a Deep Learning algorithm capable of separating tectonic signals from environmental contributions and geodetic noise in GNSS time series.
Explore the information to better understand the dynamic of slip along faults and the time dependent deformation of the Earth' surface related to the atmosphere, the hydrosphere and the ocean.

Activités

The post-doctoral researcher will design, train, optimize and test the Deep Learning algorithm. He/She will evaluate the performance against existing approaches. He/She will use the result to search for unknown possible fault behaviors. The chosen candidate will write scientific articles, publish them in peer-reviewed journals and present the obtained results in international conferences.

Compétences

Experience in large datasets analysis
Experience in at least one of the following items:
Geodetic data analysis
Seismological data analysis
Deep Learning
Experience with computing languages (python)
English, spoken and written
Ability to write scientific articles and promote his research

Contexte de travail

The successful applicant will work at Géoazur, a mixed research unit located in Valbonne on the French Riviera (Nice area, France) hosting researchers from IRD, CNRS, Observatoire de la Côte d'Azur and Université Côte d'Azur. Géoazur hosts 165 people and is a national and international leader in the field of earthquake science, offering many possibilities of interaction on this thematic. The post-doctoral researcher will join the “SEISMES” (earthquake) team composed of 50 researchers (https://geoazur.oca.eu/fr/membres-equipe-seismes-geoazur). The successful candidate will have the opportunity to interact with several other post-doctoral researchers (as well as multiple PhD students) in the team developing Deep Learning algorithms on related topics, in particular in the framework of the ERC project EARLI (https://geoazur.oca.eu/fr/rech-geoazur/rech-geoazur-projets/299-geo-projets-recherche-phares/2885-earli-detection-of-early-seismic-signal-using-artificial-intelligence-erc-2021).
The research will be done in collaboration with Quentin Bletery, Jean-Mathieu Nocquet (Géoazur) and Bertrand Rouet-Leduc (Kyoto University, Japan).
The agent's employer will be IRD (Institut de Recherche pour le Développement), a French public research institution (https://en.ird.fr/). IRD supports an original model of equitable scientific partnership and interdisciplinary, citizen, sustainability science committed to the achievement of the Sustainable Development Goals.

Informations complémentaires

The project is funded by the ERC project EARLI led by Quentin Bletery (https://geoazur.oca.eu/fr/rech-geoazur/rech-geoazur-projets/299-geo-projets-recherche-phares/2885-earli-detection-of-early-seismic-signal-using-artificial-intelligence-erc-2021).