En poursuivant votre navigation sur ce site, vous acceptez le dépôt de cookies dans votre navigateur. (En savoir plus)
Portail > Offres > Offre UMR7329-QUEBLE-002 - H/F Chercheur en dé-bruitage de données sismologiques par Deep Learning

M/F Researcher in seismological data denoising using Deep Learning

This offer is available in the following languages:
Français - Anglais

Date Limite Candidature : vendredi 19 août 2022

Assurez-vous que votre profil candidat soit correctement renseigné avant de postuler. Les informations de votre profil complètent celles associées à chaque candidature. Afin d’augmenter votre visibilité sur notre Portail Emploi et ainsi permettre aux recruteurs de consulter votre profil candidat, vous avez la possibilité de déposer votre CV dans notre CVThèque en un clic !

General information

Reference : UMR7329-QUEBLE-002
Workplace : VALBONNE
Date of publication : Friday, July 29, 2022
Type of Contract : FTC Scientist
Contract Period : 18 months
Expected date of employment : 1 November 2022
Proportion of work : Full time
Remuneration : From 2500 € to 3200 € (gross salary) depending on experience
Desired level of education : PhD
Experience required : Indifferent

Missions

Develop a Deep Learning algorithm capable of denoising seismological data recorded on low-cost instruments. Explore the information that can be extracted from Raspberry Shake (RS) data on seismological processes, with a special interest in instruments deployed in Haiti.

Activities

The post-doctoral researcher will design, train, optimize and test the Deep Learning algorithm capable of denoising RS data. The objective will be to predict high-quality seismograms recorded by Broad-Band instruments from RS data, using a catalog of waveforms recorded and co-located RS and BB stations. The chosen candidate will write scientific articles, publish them in peer-reviewed journals and present the obtained results in international conferences.

Skills

- Experience with seismological data and interest for Deep Learning OR experience in Deep Learning and interest for seismology
- Experience with computing languages (python)
- English, spoken and written
- Ability to write scientific articles and promote their research

Work Context

The successful applicant will work at Géoazur, a mixed research unit located in Valbonne on the French Riviera (Nice area) hosting researchers from CNRS, OCA, IRD and Université Côte d'Azur. Géoazur hosts 165 people and is a national and international leader in the field of earthquake science, offering many possibilities of interaction on this thematic. The post-doctoral researcher will join the “SEISMES” (earthquake) team composed of 40 permanent and non-permanent researchers (https://geoazur.oca.eu/fr/membres-equipe-seismes-geoazur). The successful candidate will have the opportunity to interact with several other post-doctoral researchers (as well multiple PhD students) in the team developing Deep Learning algorithms on related topics (in particular in the framework of the ERC project EARLI).

The research will be done in collaboration with Quentin Bletery, Jean-Paul Ampuero, Françoise Courboulex, Tony Monfret, Éric Calais, principal investigator of the OSMOSE ANR project.

OSMOSE is a pioneer project in participative seismology, aiming at multiplying seismic instruments hosted by citizens in Haiti (https://geoazur.oca.eu/en/research-geoazur/research-geoazur-projects/3740-osmose-toward-a-multi-stakeholder-socio-seismological-observation-network-for-seismic-risk-reduction-in-haiti-anr-2023). This approach has a strong potential from a sociological point of view but also for the understanding of seismological processes (https://www.science.org/doi/abs/10.1126/science.abn1045).

The agent's employer will be IRD (Institut de Recherche pour le Développement), a French public research institution. IRD supports an original model of equitable scientific partnership and interdisciplinary, citizen, sustainability science committed to the achievement of the Sustainable Development Goals.

Additional Information

The project is funded by the ANR project OSMOSE led by Éric Calais.

We talk about it on Twitter!