En poursuivant votre navigation sur ce site, vous acceptez le dépôt de cookies dans votre navigateur. (En savoir plus)
Portail > Offres > Offre UMR7264-MARCOR-002 - Imagerie 3D et modèles d'apprentissage neuro-symboliques: identification de restes d'animaux en archéozoologie (H/F)

3D imaging and neuro-symbolic learning models: identification of faunal remains in archaeozoology (M/F)

This offer is available in the following languages:
- Français-- Anglais

Date Limite Candidature : mercredi 14 janvier 2026 23:59:00 heure de Paris

Assurez-vous que votre profil candidat soit correctement renseigné avant de postuler

Informations générales

Intitulé de l'offre : 3D imaging and neuro-symbolic learning models: identification of faunal remains in archaeozoology (M/F) (H/F)
Référence : UMR7264-MARCOR-002
Nombre de Postes : 1
Lieu de travail : NICE
Date de publication : mercredi 24 décembre 2025
Type de contrat : Chercheur en contrat CDD
Durée du contrat : 6 mois
Date d'embauche prévue : 1 mars 2026
Quotité de travail : Complet
Rémunération : €3,071.50 (gross monthly salary, CNRS pay scale)
Niveau d'études souhaité : Doctorat
Expérience souhaitée : 1 à 4 années
Section(s) CN : 31 - Hommes et milieux : évolution, interactions

Missions

Contributing to documenting the dynamics of interactions between humans, wild and domestic fauna, and environments during the Holocene, this project aims to improve the identification of ancient fauna. It will strengthen the study of anthropogenic impact on past biodiversity and its transformations, and refine the recognition of extinct animal varieties or those with particular adaptations by combining methods borrowed from archaeozoology, 3D imaging and machine learning.

Activités

The main task of the successful candidate will be to help redefine certain traditional criteria of comparative anatomy used in archaeozoology and to establish new criteria specific to 3D models, based on 150 3D-modelled taluses belonging to five morphologically similar taxa: sheep, goats, alpine ibex, European roe deer and gazelles. These criteria will form the future reference features for machine learning (AI) algorithms. The successful candidate will work as part of a multidisciplinary team of archaeozoologists and mathematicians.

Compétences

The ideal candidate will hold a PhD in archaeology, specialising in archaeozoology, and potentially be familiar with 3D modelling. Knowledge of the taxa of interest (sheep, goats, alpine ibex, European roe deer and gazelles) is required.

Contexte de travail

The mission will be based at the CEPAM laboratory, part of the Maison des Sciences Humaines et Sociales Sud-Est (MSHS) at the Université Côte d'Azur (UniCA) in Nice (Saint Jean d'Angély 3 campus). The doctoral candidate will be co-supervised by Manon Vuillien (archaeozoologist, CNRS) and Marco Corneli (CPJ, UniCA).

Contraintes et risques

NA