Informations générales
Intitulé de l'offre : Post-doc (M/F) Geometry and analysis (H/F)
Référence : UMR7013-YANHER-001
Nombre de Postes : 1
Lieu de travail : TOURS
Date de publication : lundi 22 décembre 2025
Type de contrat : Chercheur en contrat CDD
Durée du contrat : 24 mois
Date d'embauche prévue : 1 septembre 2026
Quotité de travail : Complet
Rémunération : between 3041 € and 4216 € gross depending on experience
Niveau d'études souhaité : Doctorat
Expérience souhaitée : Indifférent
Section(s) CN : 41 - Mathématiques et interactions des mathématiques
Missions
The main purpose of the programme is to develop the geometric approach to scattering theory and to understand the peeling phenomenon, in relation with asymptotic symmetries. The "institut Denis Poisson" is laboratory of both mathematics and theortical physics (supported by both INSMI and INP), the post doc will be collaborate with the "Analysis and Geometry" team as well as the "Theoretical Physics" team.
Activités
- Collaboration with Y. Herfray (Tours) and J.P. Nicolas (Brest)
- Participation to the working group "asymptotic symmetries" with the group of R. Gicquaud, X. Bekaert and Y.Herfray.
- Participation to local seminars
- Mobility between Tours and Brest (Funded by the ANR)
Compétences
- Asymptotic analysis
- General relativity
- Asymptotic symmetries
- Proficient in English
- Team collaboration skills
Contexte de travail
We are looking for an expert in the asymptotic analysis of partial differential equations, ideally with a working experience in general relativity. The post-doc will be recruited for two-years at Institut Denis Poisson (Tours, UMR 7013 - CNRS, Univ. Orleans and Tours), starting in Autumn 2026. The appointed person will collaborate with Yannick Herfray (IDP, Tours) and Jean-Philippe Nicolas (LMBA, Brest) as part of the ANR project ScattHoloGR (Scattering, Holography and General Relativity). The main purpose of the programme is to develop the geometric approach to scattering theory and to understand the peeling phenomenon, in relation with asymptotic symmetries.