Informations générales
Intitulé de l'offre : Postdoctoral Researcher in Signal Processing and Machine Learning (M/F) (H/F)
Référence : UMR5672-ADRMEY-001
Nombre de Postes : 1
Lieu de travail : LYON 07
Date de publication : lundi 16 juin 2025
Type de contrat : Chercheur en contrat CDD
Durée du contrat : 12 mois
Date d'embauche prévue : 1 octobre 2025
Quotité de travail : Complet
Rémunération : From €3021 gross per month depending on experience
Niveau d'études souhaité : Doctorat
Expérience souhaitée : Indifférent
Section(s) CN : 07 - Sciences de l'information : traitements, systèmes intégrés matériel-logiciel, robots, commandes, images, contenus, interactions, signaux et langues
Missions
The post-doc recruited will participate in the development of new representations for the analysis of non-stationary signals, in particular bioacoustic signals. The main objective is to design, implement and evaluate a constrained neural architecture capable of producing interpretable and compact representations, based on the broken stationarity model. This work is part of a wider effort to gain a fine-grained understanding of complex acoustic signals for analysis or classification purposes.
Activités
- Development of a representation model based on deep learning, constrained by physical and mathematical considerations (spectrum of a stationary signal + deformation function).
- Implementation of the model in the form of a non-linear neural network, with a decoder reproducing the synthesis operation.
- Quantitative evaluation of the model on real databases, in particular the Watkins Marine Mammal Sound Database.
- Performance comparison with conventional time-frequency analysis methods (wavelets, Fourier).
- Contribution to scientific publications and participation in international conferences.
- Interaction with researchers in machine learning and bioacoustics to foster interdisciplinary synergies.
Compétences
- Solid background in signal processing and/or machine learning.
- Good level of scientific programming (Python preferred).
- Knowledge of or interest in time-frequency/time-scale representations.
- Ability to work independently in a collaborative environment.
- Taste for numerical experimentation, reproducibility and critical analysis of results.
Contexte de travail
The successful candidate will join the Signals, Systems and Physics (Sisyph) team of the Laboratoire de Physique at ENS Lyon. This team produces high-level research for methodological development in the field of information processing (from signal and image processing to machine learning).