General information
Offer title : Postdoc (M/F) on cardiovascular stents for complex anatomy (H/F)
Reference : UMR7343-FANALL-017
Number of position : 1
Workplace : MARSEILLE 13
Date of publication : 07 April 2025
Type of Contract : Researcher in FTC
Contract Period : 12 months
Expected date of employment : 1 July 2025
Proportion of work : Full Time
Remuneration : Between €3081 and €4291 gross/month depending on experience
Desired level of education : Doctorate
Experience required : 1 to 4 years
Section(s) CN : 10 - Fluid and reactive environments: transport, transfer, transformation processes
Missions
We have recently demonstrated that irreversible plastic deformations can be harnessed to design cellular metamaterials capable of permanent shape transformations. A reduced model, accounting for the elastoplastic deformation of the joints and the elastic bending of the connecting beams, successfully solves the inverse problem for in-plane transformations. However, it remains insufficient for accurately predicting the inverse problem in three dimensions.
This project aims to develop finite element formulations within Galileo, a software package designed in the laboratory, to establish a fast and efficient computational approach for solving the inverse problem in 3D. This breakthrough will be crucial for applying the method to the development of stents capable of adapting to complex anatomies.
Activities
A mechanical formulation will be developed and integrated into numerical simulations using Galileo, a finite element software (FEM) developed in the laboratory, specialized in nonlinear static and dynamic mechanical analysis. By reducing the number of degrees of freedom, this approach significantly lowers computational costs compared to traditional shell and solid meshing methods. This efficiency gain will facilitate extensive parametric analyses and enable an effective resolution of the inverse problem. These numerical developments will be conducted in close collaboration with a postdoctoral associate already engaged in the project's experimental aspects.
Skills
Candidates with a PhD in physics, mechanics or engineering, and an interest in solid mechanics, fluid mechanics or biomechanics, are strongly encouraged to apply. A strong interest in the development of new numerical finite element methods is required, as well as the ability to work closely with experimentalists.
Work Context
SOFT is a collaborative research team working on the physics of complex media, from granular flows to bio-inspired systems. SOFT is part of IUSTI, a CNRS and Aix Marseille University laboratory. It is part of the Institut de mécanique et d'ingénierie de Marseille (IMI), one of France's leading institutes in fluid and solid mechanics, with strong opportunities for interaction with local and international collaborators.
The position is located in a sector under the protection of scientific and technical potential (PPST), and therefore requires, in accordance with the regulations, that your arrival is authorized by the competent authority of the MESR.