En poursuivant votre navigation sur ce site, vous acceptez le dépôt de cookies dans votre navigateur. (En savoir plus)
Portail > Offres > Offre UMR8237-ANDEST-001 - Post-doc en matière active moléculaire programmable (H/F)

Post-doc in programmable active matter (M/W)

This offer is available in the following languages:
Français - Anglais

Assurez-vous que votre profil candidat soit correctement renseigné avant de postuler. Les informations de votre profil complètent celles associées à chaque candidature. Afin d’augmenter votre visibilité sur notre Portail Emploi et ainsi permettre aux recruteurs de consulter votre profil candidat, vous avez la possibilité de déposer votre CV dans notre CVThèque en un clic !

Faites connaître cette offre !

General information

Reference : UMR8237-ANDEST-001
Workplace : PARIS 05
Date of publication : Monday, February 11, 2019
Type of Contract : FTC Scientist
Contract Period : 24 months
Expected date of employment : 1 May 2019
Proportion of work : Full time
Remuneration : 3000 € brutto/month
Desired level of education : PhD
Experience required : Indifferent

Missions

The objective of the project is to couple the two main types of mechanisms of molecular self-organization implemented in the laboratory, namely reaction-diffusion and active material, with the change in a macroscopic property of a material, such as for example a hydrogel. The molecular systems used will be based on DNA and enzymes, with also physicochemical systems such as emulsions. The molecular control of the system will be exerted by playing on the properties of programmability of the DNA. The question we ask ourselves is: can we make synthetic materials that mimic the self-organization implemented during the development of an embryo?

Activities

Thinking, production and modification of recombinant proteins, synthesis of modified oligonucleotides, chemical kinetics, notably enzymatic and DNA, microscopy, image analysis, writing scientific articles, oral presentations.

Skills

This is an experimental project combining nucleic acid and protein biochemistry, nucleic acid chemistry, chemical kinetics, fluorescence microscopy and image analysis. It is also an inter-disciplinary project, at the interface between physicochemistry, biophysics, synthetic chemistry, soft matter and DNA-based molecular programming.

Work Context

Our research group is interested in the molecular mechanisms responsible for the generation of order in living systems. With a dual purpose: to understand the emergence of the molecular order and use it to develop innovative materials inspired by life. To do this we study dissipative molecular programs that self-organize in space and time. These synthetic molecular programs are developed in the laboratory using a highly programmable biochemistry of nucleic acids and enzymes.

How is it that an organism made up of molecules of nanometric size organizes itself in a structure of millimetric size, as it is the case for an embryo? Can one draw inspiration from the development of the embryo to design artificial materials that are built themselves? In order to study these questions we use a bottom-up approach which consists in developing dissipative molecular programs reproducing two types of mechanisms responsible for the generation of order in the living. Reaction-diffusion mechanisms that generate spatial concentration structures, such as chemical waves (Zadorin et al., Phys Rev Lett, 2015), or band generators (Zadorin et al, Nature Chem, 2017). And mechanisms of active type that generate forces locally and therefore spatial structures of flows.

Constraints and risks

Risks associated with the handling of DNA intercalants, potentially carcinogenic, and the handling of potentially harmful chemical substances (solvents, etc.).

Additional Information

Ce contrat s'inscrit au sein du projet ERC "Metabolic soft matter with life-like properties" dont les objectifs sont:

A fundamental difference between man-made and living matter is metabolism: the ability to dissipate chemical energy to drive many different chemical processes out of equilibrium. Metabolism endows chemical systems within living organisms with properties that are standard in biology but odd in chemistry: the capability to process information, to move and to react to the external world.

My goal is to endow soft materials with dynamic life-like properties. I have chosen four: molecular computation, movement, self-construction and the capacity to entertain complex chemical conversations with living cells. To do so I will embed stimuli-responsive materials with a biocompatible synthetic metabolism capable of sustaining autonomous chemical feedback loops that process information and perform autonomous macroscopic actions. My approach combines concepts from systems chemistry, synthetic biology and DNA molecular programming with soft materials and uses a biochemical system that I have contributed to pioneer: DNA/enzyme active solutions that remain out of equilibrium by consuming a chemical fuel with non-trivial reaction kinetics. This system has three unique properties: programmability, biocompatibility and a long-term metabolic autonomy.

Metabolic matter will be assembled in two stages: i) enabling metabolic materials with dynamic chemical, biological and mechanical responses, and ii) creating metabolic materials with unprecedented properties, in particular, the capacity of self-construction, which I will seek by emulating embryogenesis, and the ability to autonomously pattern a community of living cells. By doing this I will create for the first time chemical matter that is both dynamically and structurally complex, thus bringing into the realm of synthetic chemistry behaviors that so far only existed in biological systems. In the long term, metabolic matter could provide revolutionary solutions for soft robotics and tissue engineering.

We talk about it on Twitter!